If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=-16t^2+185
We move all terms to the left:
0-(-16t^2+185)=0
We add all the numbers together, and all the variables
-(-16t^2+185)=0
We get rid of parentheses
16t^2-185=0
a = 16; b = 0; c = -185;
Δ = b2-4ac
Δ = 02-4·16·(-185)
Δ = 11840
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{11840}=\sqrt{64*185}=\sqrt{64}*\sqrt{185}=8\sqrt{185}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{185}}{2*16}=\frac{0-8\sqrt{185}}{32} =-\frac{8\sqrt{185}}{32} =-\frac{\sqrt{185}}{4} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{185}}{2*16}=\frac{0+8\sqrt{185}}{32} =\frac{8\sqrt{185}}{32} =\frac{\sqrt{185}}{4} $
| 3x/7-14x=5 | | X2-11n+18=0 | | 10.x-60=-200 | | 9^x=195 | | A=30r | | -9/2v-1/5=4/7 | | -4.3+8v=21.3 | | 4+f=15 | | 5o=20 | | s=16(3)^2 | | 5w-29=-6(w+3) | | 13c+5-6c+11=131 | | 5v-8v-7+3=3 | | 15+14b-3b-27=109 | | 19x-11x+4x=32 | | 1.2x-0.08=2.14 | | 41+14p-p=119 | | 0.4x+0.2=1.8 | | 16-6m-8+7m=73 | | 15-4x=2(4x+1) | | 12(t-7)=156 | | 2(l-6)=4 | | 7(e+8)=63 | | 6(a=2)=42 | | 22g-10=100 | | x-82+3(x-82)=132 | | 6+3x-6x=18 | | 13-4e=7 | | 3-4e=7 | | 4-(-12)=x | | 3+4e=7 | | 6w-77=5w |